Is it possible to engineer a creature capable of Lamarckian evolution?

Yes, and Lamark’s theories are misunderstood. Some dudes still think that the silly experiment with cutting of the tails of mice disproved Lamark.

from wiki:"*Lamarckian Evolution

Lamarck stressed two main themes in his biological work. The first was that the environment gives rise to changes in animals. He cited examples of blindness in moles, the presence of teeth in mammals and the absence of teeth in birds as evidence of this principle. The second principle was that life was structured in an orderly manner and that many different parts of all bodies make it possible for the organic movements of animals.[25]

Although he was not the first thinker to advocate organic evolution, he was the first to develop a truly coherent evolutionary theory[citation needed]. He outlined his theories regarding evolution first in his Floreal lecture of 1800, and then in three later published works:

* Recherches sur l'organisation des corps vivans, 1802.
* Philosophie Zoologique, 1809.
* Histoire naturelle des animaux sans vertebres, (in seven volumes, 1815-1822).

Lamarck employed several mechanisms as drivers of evolution, drawn from the common knowledge of his day and from his own belief in chemistry pre-Lavoisier. He used these mechanisms to explain the two forces he saw as comprising evolution; a force driving animals from simple to complex forms, and a force adapting animals to their local environments and differentiating them from each other. He believed that these forces must be explained as a necessary consequence of basic physical principles, favoring a materialistic attitude toward biology.

[edit] Le pouvoir de la vie: The complexifying force

Lamarck referred to a tendency for organisms to become more complex, moving ‘up’ a ladder of progress. He referred to this phenomenon as Le pouvoir de la vie or la force qui tend sans cesse à composer l’organisation (The force that perpetually tends to make order). Like many natural historians, Lamarck believed that organisms arose in their simplest forms via spontaneous generation.

Lamarck ran against the modern chemistry promoted by Lavoisier (whose ideas he regarded with disdain), preferring to embrace a more traditional alchemical view of the elements as influenced primarily by earth, air, fire and water. He asserted that the natural movements of fluids in living organisms drove them toward ever greater levels of complexity:

The rapid motion of fluids will etch canals between delicate tissues. Soon their flow will begin to vary, leading to the emergence of distinct organs. The fluids themselves, now more elaborate, will become more complex, engendering a greater variety of secretions and substances composing the organs.

        - Histoire naturelle des animaux sans vertebres, 1815.

He argued that organisms thus moved from simple to complex in a steady, predictable way based on the fundamental physical principles of alchemy. In this view, simple organisms never disappeared because they were constantly being created by spontaneous generation in what has been described as a ‘steady-state biology’. Lamarck saw spontaneous generation as being ongoing, with the simple organisms thus created being transmuted over time becoming more complex. He is sometimes regarded as believing in a teleological (goal-oriented) process where organisms became more perfect as they evolved, though as a materialist, he emphasized that these forces must originate necessarily from underlying physical principles.

[edit] L’influence des circonstances: The adaptive force

The second component of Lamarck’s theory of evolution was the adaptation of organisms to their environment. This could move organisms sideways from the ladder of progress into new and distinct forms with local adaptations. It could also drive organisms into evolutionary blind alleys, where the organism became so finely adapted that no further change could occur. This was later expanded in Charles Darwin’s theories of species adaptation and natural selection.

Lamarck argued that this adaptive force was powered by the interaction of organisms with their environment, by the use and disuse of characters:

In every animal which has not passed the limit of its development, a more frequent and continuous use of any organ gradually strengthens, develops and enlarges that organ, and gives it a power proportional to the length of time it has been so used; while the permanent disuse of any organ imperceptibly weakens and deteriorates it, and progressively diminishes its functional capacity, until it finally disappears.

These characters were then inherited, according to the common belief of the day, in what is known as “soft inheritance” (nowadays erroneously called Lamarckism):

All the acquisitions or losses wrought by nature on individuals, through the influence of the environment in which their race has long been placed, and hence through the influence of the predominant use or permanent disuse of any organ; all these are preserved by reproduction to the new individuals which arise, provided that the acquired modifications are common to both sexes, or at least to the individuals which produce the young. ....Weismann is famous for an experiment in which he cut the tails off mice, demonstrating that the injury was not passed on to the offspring; but historians of science such as Stephen Jay Gould argue that this experiment had far less effect on the acceptance of Lamarckism than Weismann's more comprehensive theoretical framework[27] (Believers in Lamarckian inheritance did not count injury or mutilation as a true acquired characteristic: only those which were initiated by the animal's own needs, that were beneficial, were expected to be passed on. This Lamarckian view is consistent with Charles Darwin's theory of natural selection)."