You can compute derivatives of P with the same dynamic-programming approach as for P; you just have to maintain a few more values. So for example if you want to compute P[sub]p[/sub]=dP/dp, you take the derivative of the transition/recursion equation
P(m,n) = [pq P(m+1,n+1) + p(1-q) P(m+1,n) + (1-p)q P(m,n+1)] / (1-(1-p)(1-q))
= a(p,q) P(m+1,n+1) + b(p,q) P(m+1,n) + c(p,q) P(m,n+1)
(a,b,c are just the coefficients, known functions of p and q) to give
P[sub]p/sub = a[sub]p[/sub] P(m+1,n+1) + b[sub]p[/sub] P(m+1,n) + c[sub]p[/sub] P(m,n+1) + a P[sub]p/sub + b P[sub]p/sub + c P[sub]p/sub
which lets you compute (P,P[sub]p[/sub]) by dynamic programming. You can of course extend this to arbitrary orders if you like.
I think you can also use this expression for P[sub]p/sub to show by induction that P[sub]p[/sub]>0 in the interior of the region, working backwards from large m and n to smaller values in the same way. The last three terms in the expression for P[sub]p/sub are a weighted average of P[sub]p[/sub] at larger values, so the inductive hypothesis lets you say that these are positive. The first three terms are a little trickier. We have a+b+c=1, so a[sub]p[/sub]+b[sub]p[/sub]+c[sub]p[/sub]=0; substitute for c[sub]p[/sub] and use P(m+1,n)>P(m+1,n+1)>P(m,n+1) (which again I think you can prove by induction) to bound the first three terms. I’m not sure if this is the easiest way to do it, though; it does seem like there should be a more straightforward way.
That was my first instinct, but it turns out to just be “large”, at least according to my polynomial-size metric (and Mathematica’s). Mathematica has no problem coming up with the exact expressions:
P(4,0,p,q) = (1/((p+q-p q)[sup]10[/sup])) p[sup]4[/sup] (q[sup]6[/sup] (165-180 q+54 q[sup]2[/sup]-4 q[sup]3[/sup])-p[sup]6[/sup] (-1+q)[sup]6[/sup] (-1+4 q-6 q[sup]2[/sup]+4 q[sup]3[/sup])+2 p q[sup]5[/sup] (121-515 q+490 q[sup]2[/sup]-150 q[sup]3[/sup]+12 q[sup]4[/sup])+p[sup]2[/sup] q[sup]4[/sup] (209-1214 q+2665 q[sup]2[/sup]-2220 q[sup]3[/sup]+690 q[sup]4[/sup]-60 q[sup]5[/sup])+2 p[sup]5[/sup] (-1+q)[sup]2[/sup] q (5-35 q+105 q[sup]2[/sup]-173 q[sup]3[/sup]+162 q[sup]4[/sup]-78 q[sup]5[/sup]+12 q[sup]6[/sup])+4 p[sup]3[/sup] q[sup]3[/sup] (30-209 q+609 q[sup]2[/sup]-915 q[sup]3[/sup]+670 q[sup]4[/sup]-210 q[sup]5[/sup]+20 q[sup]6[/sup])+p[sup]4[/sup] q[sup]2[/sup] (45-360 q+1254 q[sup]2[/sup]-2444 q[sup]3[/sup]+2815 q[sup]4[/sup]-1820 q[sup]5[/sup]+570 q[sup]6[/sup]-60 q[sup]7[/sup]))
P(3,0,p,q) = (1/((p+q-p q)[sup]11[/sup])) p[sup]5[/sup] (p[sup]6[/sup] (-1+q)[sup]8[/sup] (1-3 q+3 q[sup]2[/sup])+3 q[sup]6[/sup] (99-165 q+90 q[sup]2[/sup]-18 q[sup]3[/sup]+q[sup]4[/sup])+p q[sup]5[/sup] (407-1947 q+2640 q[sup]2[/sup]-1414 q[sup]3[/sup]+297 q[sup]4[/sup]-18 q[sup]5[/sup])-p[sup]5[/sup] (-1+q)[sup]3[/sup] q (11-77 q+228 q[sup]2[/sup]-359 q[sup]3[/sup]+311 q[sup]4[/sup]-135 q[sup]5[/sup]+18 q[sup]6[/sup])+p[sup]2[/sup] q[sup]4[/sup] (319-2068 q+5214 q[sup]2[/sup]-5885 q[sup]3[/sup]+3065 q[sup]4[/sup]-675 q[sup]5[/sup]+45 q[sup]6[/sup])+p[sup]4[/sup] (-1+q)[sup]2[/sup] q[sup]2[/sup] (55-382 q+1104 q[sup]2[/sup]-1660 q[sup]3[/sup]+1315 q[sup]4[/sup]-450 q[sup]5[/sup]+45 q[sup]6[/sup])+p[sup]3[/sup] q[sup]3[/sup] (164-1279 q+4196 q[sup]2[/sup]-7336 q[sup]3[/sup]+7025 q[sup]4[/sup]-3520 q[sup]5[/sup]+810 q[sup]6[/sup]-60 q[sup]7[/sup]))
P(2,0,p,q) = (1/((p+q-p q)[sup]12[/sup])) p[sup]6[/sup] (-p[sup]6[/sup] (-1+q)[sup]10[/sup] (-1+2 q)+q[sup]6[/sup] (429-990 q+825 q[sup]2[/sup]-300 q[sup]3[/sup]+45 q[sup]4[/sup]-2 q[sup]5[/sup])+2 p q[sup]5[/sup] (286-1507 q+2640 q[sup]2[/sup]-2075 q[sup]3[/sup]+770 q[sup]4[/sup]-123 q[sup]5[/sup]+6 q[sup]6[/sup])+2 p[sup]5[/sup] (-1+q)[sup]4[/sup] q (6-41 q+114 q[sup]2[/sup]-165 q[sup]3[/sup]+130 q[sup]4[/sup]-51 q[sup]5[/sup]+6 q[sup]6[/sup])+4 p[sup]3[/sup] (-1+q)[sup]2[/sup] q[sup]3[/sup] (52-331 q+839 q[sup]2[/sup]-1050 q[sup]3[/sup]+610 q[sup]4[/sup]-145 q[sup]5[/sup]+10 q[sup]6[/sup])-p[sup]4[/sup] (-1+q)[sup]3[/sup] q[sup]2[/sup] (65-431 q+1155 q[sup]2[/sup]-1585 q[sup]3[/sup]+1135 q[sup]4[/sup]-345 q[sup]5[/sup]+30 q[sup]6[/sup])+p[sup]2[/sup] q[sup]4[/sup] (429-2992 q+8437 q[sup]2[/sup]-11814 q[sup]3[/sup]+8675 q[sup]4[/sup]-3260 q[sup]5[/sup]+555 q[sup]6[/sup]-30 q[sup]7[/sup]))
Here they are again (spoilered for space), using the more usual ^ exponential notation for anybody who wants to paste them into code somewhere:
[spoiler]
P(4,0,p,q) = (1/((p+q-p q)^10))p^4 (q^6 (165-180 q+54 q^2-4 q^3)-p^6 (-1+q)^6 (-1+4 q-6 q^2+4 q^3)+2 p q^5 (121-515 q+490 q^2-150 q^3+12 q^4)+p^2 q^4 (209-1214 q+2665 q^2-2220 q^3+690 q^4-60 q^5)+2 p^5 (-1+q)^2 q (5-35 q+105 q^2-173 q^3+162 q^4-78 q^5+12 q^6)+4 p^3 q^3 (30-209 q+609 q^2-915 q^3+670 q^4-210 q^5+20 q^6)+p^4 q^2 (45-360 q+1254 q^2-2444 q^3+2815 q^4-1820 q^5+570 q^6-60 q^7))
P(3,0,p,q) = (1/((p+q-p q)^11))p^5 (p^6 (-1+q)^8 (1-3 q+3 q^2)+3 q^6 (99-165 q+90 q^2-18 q^3+q^4)+p q^5 (407-1947 q+2640 q^2-1414 q^3+297 q^4-18 q^5)-p^5 (-1+q)^3 q (11-77 q+228 q^2-359 q^3+311 q^4-135 q^5+18 q^6)+p^2 q^4 (319-2068 q+5214 q^2-5885 q^3+3065 q^4-675 q^5+45 q^6)+p^4 (-1+q)^2 q^2 (55-382 q+1104 q^2-1660 q^3+1315 q^4-450 q^5+45 q^6)+p^3 q^3 (164-1279 q+4196 q^2-7336 q^3+7025 q^4-3520 q^5+810 q^6-60 q^7))
P(2,0,p,q) = (1/((p+q-p q)^12))p^6 (-p^6 (-1+q)^10 (-1+2 q)+q^6 (429-990 q+825 q^2-300 q^3+45 q^4-2 q^5)+2 p q^5 (286-1507 q+2640 q^2-2075 q^3+770 q^4-123 q^5+6 q^6)+2 p^5 (-1+q)^4 q (6-41 q+114 q^2-165 q^3+130 q^4-51 q^5+6 q^6)+4 p^3 (-1+q)^2 q^3 (52-331 q+839 q^2-1050 q^3+610 q^4-145 q^5+10 q^6)-p^4 (-1+q)^3 q^2 (65-431 q+1155 q^2-1585 q^3+1135 q^4-345 q^5+30 q^6)+p^2 q^4 (429-2992 q+8437 q^2-11814 q^3+8675 q^4-3260 q^5+555 q^6-30 q^7))[/spoiler]
You can take derivatives of these to disprove your stronger conjecture d[sup]2[/sup]P/dp[sup]2/sup = 0.
The Mathematica code for finding these:
Clear[V]
V[m_,m_,p_,q_] := 0
V[8 ,n_,p_,q_] := 1
V[m_,n_,p_,q_] := V[m,n,p,q] = 1/(1-(1-p)(1-q))(p q V[m+1,n+1,p,q] + p (1-q) V[m+1,n,p,q] + (1-p) q V[m,n+1,p,q])
V[4,0,p,q] // Simplify
V[3,0,p,q] // Simplify
V[2,0,p,q] // Simplify