Well, it surprises me. OK, here’s an equation I’m familiar with:
lambda = 2.pi.delta, where
lambda = wavelength [m],
pi = 3.14159… [dimensionless, constant],
delta = skin depth = sqrt(1/(pi.f.u.sigma)) [m]
f = frequency [Hz],
u = permeability [Fm[sup]-1[/sup]],
sigma = conductivity [Sm[sup]-1[/sup]].
Now, for your example of a 1 MHz wave in copper:
f = 10[sup]6[/sup] Hz
sigma = 5.7x10[sup]7[/sup] Sm[sup]-1[/sup]
u[sub]r[/sub] = 1
lambda = 2 x 3.14159 x sqrt(1/(3.14159 x 10[sup]6[/sup] x 4 x 3.14159 x 10[sup]-7[/sup] x 5.7 x 10[sup]7[/sup])) = 4.2x10[sup]-4[/sup] m
Now,
v = lambda.f, where
v = propagation speed [ms[sup]-1[/sup]]
v = 4.2x10[sup]-4[/sup] x 10[sup]6[/sup] = 420 ms[sup]-1[/sup]
So, OK, I believe you. David Pace’s figure of 408 ms[sup]-1[/sup] can be achieved by using sigma = 6x10[sup]7[/sup] Sm[sup]-1[/sup] (as David Pace did).
This is really weird. David Pace states “Also, the permittivity may be approximated as e[sub]0[/sub]”. That’s what I’d always though, but it can’t possibly be right.
The propagation velocity of 420 ms[sup]-1[/sup] implies a different value for e[sub]r[/sub].
420 = 1/sqrt(u e) = 1/sqrt(u[sub]0[/sub]u[sub]r[/sub] e[sub]0[/sub]e[sub]r[/sub])
= 1/sqrt(4 x 3.14159 x 10[sup]-7[/sup] x 8.854x10[sup]-12[/sup] x e[sub]r[/sub])
e[sub]r[/sub] = 5.1x10[sup]11[/sup]
This confirms CurtC’s earlier statement:
(No need for that reference, now, Curt. )