So this is the logical “paradox” discussed
here (also no imbedded YouTube, booo bad Cecil )
That says that because these two statements are logically equivalent:
All Ravens are black
All non-Black objects are non-Ravens
Then these statements are too
Finding a black raven is support for the hypothesis that all Ravens are black.
Finding a non-black non-raven is support for the hypothesis that all non-black objects are non-ravens.
Which in turn means:
Finding a non-Black non-Raven is support for the hypothesis that all ravens are black
So if you find a white shoe, that i support for the hypothese all ravens are black.
But that seems trivially true to me, I don’t see the paradox, finding a non-black non-raven object does provide support for that hypothesis, albeit by a minuscule amount. The first explanation given in that videos seems obviously correct, I don’t get the paradox or the reason the other two (IMO much more tenuous) explanations in the video are needed. It’s a little counter intuitive, but that doesn’t make it a paradox.
I mean if instead of saying the statements are describing all the things in the universe, you preface this by saying we are talking about the set of model things in a small box I am holding it is trivially true. If I pull out a white shoe that supports the assertion that all the ravens in the box are in fact black (in fact if it is the last thing in the box and all the ravens pulled out so far are black, it proves the statement true). It seems just as true for a box containing all the things in the universe.
What am I missing?