I’ve read that one of the ways yoghurt is supposed to be beneficial is that it stimulates your immune system. How would this work? Do the bacteria move into the blood stream and then are attacked by white blood cells? I know we have beneficial bacteria in our intestines, so I wouldn’t expect them to be attacked in the gut. How does this whole immune system good/bad bacteria thing work?
Q.E.D
October 6, 2006, 4:42pm
2
Immunologic effects of yogurt , Meydani and Ha, 2000.
From the abstract:
Although the results of these studies, in general, support the notion that yogurt has immunostimulatory effects, problems with study design, lack of appropriate controls, inappropriate route of administration, sole use of in vitro indicators of the immune response, and short duration of most of the studies limit the interpretation of the results and the conclusions drawn from them. Nevertheless, these studies in toto provide a strong rationale for the hypothesis that increased yogurt consumption, particularly in immunocompromised populations such as the elderly, may enhance the immune response, which would in turn increase resistance to immune-related diseases. This hypothesis, however, needs to be substantiated by well-designed randomized, double-blind, placebo-controlled human studies of an adequate duration in which several in vivo and in vitro indexes of peripheral and gut-associated immune response are tested.
There’s no good way to answer “how” in layman’s terms, so here’s some jargon:
IgA adaptation to the presence of commensal bacteria in the intestine.
The lower intestine of mammals is colonised by a dense flora composed mainly of non-pathogenic commensal bacteria. These intestinal bacteria have a wide-ranging impact on host immunity and physiology. One adaptation following intestinal colonisation is increased production and secretion of polyspecific intestinal IgA. In contrast to the strong mucosal immune response to bacterial colonisation, the systemic immune system remains ignorant of these organisms in pathogen-free mice. Small numbers of bacteria can penetrate the epithelial surface overlying Peyer’s patches and survive in dendritic cells to induce IgA by T-dependent and T-independent mechanisms. These dendritic cells loaded with live commensal organisms can home to the mesenteric lymph nodes but do not reach systemic secondary lymphoid structures, so induction of mucosal responses is focused in mucosal lymphoid tissues. The secretion of antibodies across the intestinal epithelial surface in turn limits the penetration of commensal organisms, but this is one of many mechanisms which adapt the intestinal mucosa to co-existence with commensal bacteria.
Probiotics stimulate production of natural antibodies in chickens.
Commensal bacteria in the intestine play an important role in the development of immune response. These bacteria interact with cells of the gut-associated lymphoid tissues (GALT). Among cells of the GALT, B-1 cells are of note. These cells are involved in the production of natural antibodies. In the present study, we determined whether manipulation of the intestinal microbiota by administration of probiotics, which we had previously shown to enhance specific systemic antibody response, could affect the development of natural antibodies in the intestines and sera of chickens. Our findings demonstrate that when 1-day-old chicks were treated with probiotics, serum and intestinal antibodies reactive to tetanus toxoid (TT) and Clostridium perfringens alpha-toxin in addition to intestinal immunoglobulin A (IgA) reactive to bovine serum albumin (BSA) were increased in unimmunized chickens. Moreover, IgG antibodies reactive to TT were increased in the intestines of probiotic-treated chickens compared to those of untreated controls. In serum, IgG and IgM reactive to TT and alpha-toxin were increased in probiotic-treated, unimmunized chickens compared to levels in untreated controls. However, no significant difference in serum levels of IgM or IgG response to BSA was observed. These results are suggestive of the induction of natural antibodies in probiotic-treated, unimmunized chickens. Elucidating the role of these antibodies in maintenance of the chicken immune system homeostasis and immune response to pathogens requires further investigation.
Both of those were animal studies. It’s not clear whether the same pathways occur in human adults. However, there does appear to be plenty of evidence that bacteria stimulates the immune system in newborns .
Thanks. Once you mention it, it is obvious there is more to “immune response” than leukocytes. Doh!