No. What if the other end is anchored to the roof, and what is moving is the point at which the rope bends through a pulley? You aren’t pulling the end of the rope, you are pulling an ever-changing point on the rope.

Let me see if I can explain it sufficiently…

If you pull on a rope in a tug of war, the other end moves exactly the same as the end you pull on. So, you don’t get any help from the rope.

If you put a pulley on the ceiling and run a rope up to the pulley and then down to a weight, you still have to pull the rope just as far as the weight moves, so again, no help.

Now, if you put a pulley on the top of the weight, and run a rope down from the ceiling through the pulley and up to you on a balcony, you have to pull the rope twice as far as the weight moves. Since you are doing the same amount of work in twice the distance (twice the rope) you only need half the force. Voila, mechanical advantage.

Why do you have to pull twice as much rope? Examine the system. You have a rope going from the ceiling all the way down to the floor, through the pulley, and all the way back to the ceiling. When the weigt is at the top, there will be zero rope left (or a small amount) as the pulley, the anchor, and you are all at the ceiling. So, the entire length of the rope is used to lift the weight up.

With the pulley on the ceiling, you start with the rope going from the weight, to the ceiling, and back down to you on the ground. When you are done and the weight is on the ceiling, you still have the rope coming from the ceiling down to you, so you have only pulled half the rope. Since you have done the same work (pushing the weight to the ceiling) in half the distance (half as much rope) you used twice the force.

Another way of looking at it is ‘How many ropes are sharing the work?’ With the pulley on the ceiling, only one rope attaches to the weight. With the pulley on the weight, TWO ropes are attached to the weight - the one coming down from the anchor, and the one going up to you. The two portions of rope share the work.

If you build a complex system of pulleys such that 10 rope segments are lifting the weight, then with each 10 feet you pull the rope, the weight will only rise 1 foot, because you have had to pull 1 foot out of EACH of the rope segments in order to get 10 feet out of the end of the rope.