Stress and Memory
Chronic over-secretion of stress hormones adversely affects brain function, especially memory. Too much cortisol can prevent the brain from laying down a new memory, or from accessing already existing memories.
The renowned brain researcher, Robert M. Sapolsky, has shown that sustained stress can damage the hippocampus , the part of the limbic brain which is central to learning and memory. The culprits are “glucocorticoids,” a class of steroid hormones secreted from the adrenal glands during stress. They are more commonly know as corticosteroids or cortisol .
During a perceived threat, the adrenal glands immediately release adrenalin. If the threat is severe or still persists after a couple of minutes, the adrenals then release cortisol. Once in the brain cortisol remains much longer than adrenalin, where it continues to affect brain cells.
topics
Cortisol Affects Memory Formation and Retrieval
Have you ever forgotten something during a stressful situation that you should have remembered? Cortisol also interferes with the function of neurotransmitters, the chemicals that brain cells use to communicate with each other.
Excessive cortisol can make it difficult to think or retrieve long-term memories. That’s why people get befuddled and confused in a severe crisis. Their mind goes blank because “the lines are down.” They can’t remember where the fire exit is, for example.
topics
Why We Lose Our Memory
Stress hormones divert blood glucose to exercising muscles, therefore the amount of glucose – hence energy – that reaches the brain’s hippocampus is diminished. This creates an energy crisis in the hippocampus which compromises its ability to create new memories.
That may be why some people can’t remember a very traumatic event, and why short-term memory is usually the first casualty of age-related memory loss resulting from a lifetime of stress.
topics
Cortisol and Temporary Memory Loss-Study
In an animal study, rats were stressed by an electrical shock, and then made to go through a maze that they were already familiar with. When the shock was given either four hours before or two minutes before navigating the maze, the rats had no problem. But, when they were stressed by a shock 30 minutes before, the rats were unable to remember their way through the maze.
This time-dependent effect on memory performance correlates with the levels of circulating cortisol, which are highest at 30 minutes. The same thing happened when non-stressed rats were injected with cortisol. In contrast, when cortisol production was chemically suppressed, then there were no stress-induced effects on memory retrieval.
According to James McGaugh, director of the Center for the Neurobiology of Learning and Memory at the University of California, Irvine, "This effect only lasts for a couple of hours, so that the impairing effect in this case is a temporary impairment of retrieval. The memory is not lost. It is just inaccessible or less accessible for a period of time."12
topics
Cortisol and the Degenerative Cascade
Normally, in response to stress, the brain’s hypothalamus secretes a hormone that causes the pituitary gland to secrete another hormone that causes the adrenals to secrete cortisol. When levels of cortisol rise to a certain level, several areas of the brain – especially the hippocampus – tell the hypothalamus to turn off the cortisol-producing mechanism. This is the proper feedback response.
The hippocampus, however, is the area most damaged by cortisol. In his book Brain Longevity, Dharma Singh Khalsa, M.D., describes how older people often have lost 20-25% of the cells in their hippocampus, so it cannot provide proper feedback to the hypothalamus, so cortisol continues to be secreted. This, in turn, causes more damage to the hippocampus, and even more cortisol production. Thus, a Catch-22 “degenerative cascade” begins, which can be very difficult to stop.
topics
Cortisol and Brain Degeneration-Study
Studies done by Dr. Robert M. Sapolsky, Professor of Neurology and Neurological Sciences at Stanford University, showed that lots of stress or exposure to cortisol accelerates the degeneration of the aging hippocampus.
And, because the hippocampus is part of the feedback mechanism that signals when to stop cortisol production, a damaged hippocampus causes cortisol levels to get out of control – further compromising memory and cognitive function. The cycle of degeneration then continues. (Perhaps similar to the deterioration of the pancreas-insulin feedback system.)
topics
Cortisol Levels During Human Aging-Study
The study was titled “Cortisol levels during human aging predict hippocampal atrophy and memory deficits”. A third of the 60 volunteers, who were between ages 60 and 85, had chronically high cortisol levels, a problem that seems to be fairly common in older people.13
The size of the hippocampus averaged 14% smaller in one group and showed high and rising cortisol levels, compared to a group with moderate and decreasing levels. The small hippocampus group also did worse at remembering a path through a human maze and pictures they’d seen 24 hours earlier and – two tasks that use the hippocampus.
topics
Shrinking Hippocampus, Memory Loss, and Alzheimer’s-Study
Using magnetic resonance imaging, Mayo Clinic researchers found that specific changes in the hippocampus were linked to changes in behavior associated with aging and Alzheimer’s disease. “When certain parts of the hippocampus shrink or deteriorate, specific, related memory abilities are affected,” says neurologist Ronald C. Petersen, the principal author of the study.
Furthermore, individuals with a shrunken hippocampus tend to progress more rapidly towards Alzheimer’s.
“In earlier studies we were able to show that the volume of the hippocampus could help diagnose early Alzheimer’s disease or help predict which patients may develop Alzheimer’s disease in the future. Now we can look specifically at which part or parts of the hippocampus are affected and match that with particular memory functions which are impaired in that particular patient,” says Dr. Petersen.14