Is there a simple way to explain this?
I was reading about the black hole firewall paradox and it seemed to hinge on the fact that separation, the disentanglement of entangled particles, generates huge amounts of energy. I suppose I could ‘intuit’ it better if such a separation required/produced an infinite amount of energy, i.e. that it was impossible. But a finite amount? That would seem to make it possible.
What is the source of the energy latent in quantum entanglement? How is it released?
Thanks,
ETA: Can states be only partially entangled? The term ‘fully entangled’ comes up suggesting that it may not always be complete
In case anyone is curious about the black hole firewall paradox, I found this to be a particularly accessible piece. I assume it’s credible given its source, but whadda I know.
As far as I can see the firewall is the manifestation of Hawking radiation very close to the event horizon, particularly in order that the evolution of a black hole appears to be unitary for a distant observer and for Hawking radiation to take the form it is supposed to take for a distant observer the Hawking radiation must manifest itself as a firewall just above the horizon to a in-falling observer.
As an ‘intuitive’ (such as these things go) reason for the fact that you get a ‘firewall’ if you break the entanglement, consider that, in quantum field theory, the vacuum state is a highly entangled one (and yes, there are different degrees of entanglement). Thus, removing the entanglement gets you farther and farther away from aa vacuum state—and thus, towards states with lots of particles in different energy states. The more entanglement you remove, the higher the mean temperature of this state will be, and since there’s a finite amount of entanglement (at least for some regularized version of the theory), there will be a finite maximum temperature.
Mathematically, if you break the entanglement of a maximally entangled state, you get what’s known as a ‘mixed’ state, a state of maximum entropy. You can think of this equivalently as a state of maximum ignorance, some particular ensemble with a temperature associated to it.
Thank you.
I’ve now looked at the Wiki page on quantum entanglement, with “looked at” being pretty much an accurate description. One thing I did get out of it, though, is that entanglement is hugely more intricate than I might have imagined. But even that won’t stop me from asking if the energy produced as disentanglement occurs is, ultimately, vacuum energy? (But with a different sign?)
The vacuum energy is the energy inherent in the ground state (vacuum state) of the system, so there’s no relation there.