*MaryAnnQ: When Greg was in the bowling tournament his score was 666 (not ONE WORD about that number! ). The scores of other bowlers averaged 600 and more. They only bowled 3 games, so how can this be? I was told that they score with a handicap but no one could tell me how they figure it out. Does anybody here know?

**JimB: “Hmmm, what’s hard to figure out? 300 is a perfect game, 666 in three games, averages 222 per game. A very good score, lot’s better than I’ve ever managed, but very posible.” **

MaryAnnQ: Sorry…I should have clarified something. Greg’s scores were 60, 68, and 58. I was wondering about how they figure out the score because the 666 score is very high based on what was bowled.*

You did mention that the 666 was a *handicap* series. A little algebra:

Let S[sub]h[/sub] = Handicap Series

G[sub]1[/sub] = Game 1 score (scratch)

G[sub]2[/sub] = Game 2 score (scratch)

G[sub]3[/sub] = Game 3 score (scratch)

H = Greg’s Handicap

S[sub]h[/sub] = (G[sub]1[/sub]+H)+(G[sub]2[/sub]+H)+(G[sub]3[/sub]+H)

rearranging:

S[sub]h[/sub] = G[sub]1[/sub] + G[sub]2[/sub] + G[sub]3[/sub] + H + H + H

Substituting:

666 = 60 + 68 + 58 + 3H

480 = 3H

H = 160

So Greg’s handicap, which was added to each game’s score, is 160. That figure was most probably figured from his established average (E/A) and put into a formula for use in the tournament.